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FLUOROOLEFIN DIPEPTIDE ISOSTERES - I. 

The Synthesis of GlyY(CF=CH)Gly and Racemk PheY(CF&H)Gly 
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Summary: The syntheses of Gly-Gly and racemic Phe-Gly fluoroolefin dipeptide isosteres are 
described, the firs-f examples of a new class of peptkle anabgues. 

The use of non-hydrolyzable amide isosteres is an established approach 12 to overcoming one of the major drawbacks in 

the use of peptides as therapeutic agents, namely their rapid degradation by peptldases. One known approach is to use 

the trans-olefinic as amide mitic, which is geometrically equivalent to the amide bond in its most stable (transoid) 

conformation 3. Several contributions to the synthesis and application of this class of compounds 1 have been made 4. 

Diiptide 1 X=H 
2 X=F 

We have calculated the molecular profiles of N-methyl acetamide, trans-2-butene and 2-fluoro-2(Z)-butane as 

simple models of the peptide bond (see figure 1). Their compadson suggests that the fluomolefin unit is an even better 
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Flgure 1: Dreiding and CPK-representation (standard geometries) and electrostatic potential profiles of N-methyl 
acetamide, transQ-butene and 2-fluoro-2(Z)-butene 5. 
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amide bond substitute mimicking both stertc and electronic features of the pepttde bond. Dipole moment calculations 

enabled Abraham 7 to reach the same concluston, though attenpts to synthesize the corresponding dipeptlde isostere 

2 have not, until now, been successful s. In thts letter we describe the preparation of the first examples of fluoroolefin 

isosteres 3 (Gly-Gty mimic) and 4 (Phe-Gly anabgue). the latter In both the E and Z configuration at the fluorcolefin 

double bond. 

7a X=oB 
b Br 

PhthN 

lC.1. 
: N3 

f 
5 Y&B 

F 

3a RX = phthdoyl 

3b R=BOC.R’=H 

Scheme 1. a. CHCl2F, CH2Cl2,50% NaGH, PhCH2NEt&I, 41%; b. aq. HCI, dloxane, reflux, 34% c. TDS-CI, irnldazole, 
DMF, n, 85%; d. DIBAH, toluene, -70°, 80%; e. CBr4, PhsP, CH2C12,0°, 50%; 1. K-phthafimkie, DMF,50°, 55%; g. NaNs, 
DMF, rt, 64%; h. LAH, ether, rt, 80%; i. (BCC)pO, CH2Cl2,85%; k. R, R’=Phth: 1% HCI in EtOH. R=BGC, F&H: Bu4NF; I. 
Jones oxidation, 68%. 

As summarized in scheme 1 the Gly-Gly fluoroolefin dtpeptide isostere 3 was synthedzed from cyclic acetal 5, 

obtained by the procedure of Dehmbw g. Compound 5 was then subjected to acid catalyzed hydrolysis which occurred 

with concomitant double bond 10 isomedsation to give the Z configurated a&unsaturated aldehyde 6a. Further 

elaboration as detailed in scheme 111 ultimately afforded the N-protected amino ackts 3a and 3b ‘3. 

The Phe-Gly isostere 4(Z) was prepared starting wtth the aklehyde 6b (scheme 2). Thus treatment with liihlum 

hexamethyldisilazide 14 at -250C to form the corresponding silylimine followed by in situ addiiion of benzylmagnesium 

chloride and aqueous work up afforded the amine 8 in 48%. yield. After protection of the amtno group, deprotection and 

oxidation of the alcohol functionality, the N-BOC protected dipeptide isostere 4(Z) was obtained as a racematell. ln 

order to study the significance of the double bond geometry we also synthesized the corresponding 4(E) isomer by a 

similar reaction sequence (Scheme 3). The silyloxypropanal 10, prepared from 3-hydroxy-propionitrile 9, was 

fluoroolefinated using trtethylphosphonofluoro acetate ‘5 to get the E-configurated ester 11 which was further reduced 

to the aldehyde 12, the double bond isomer of the before mentioned aldehyde 6b. In situ silylimine formation and 

Grignard addition furnished the amine 13, which was transformed in three further steps to 4(E). 

c.d.e. COOH 
OTDS _ BOC-N 

F 

6b 8 4(Z) 

Scheme 2. a. LiN(SiMe8)2, THF, hexane, -25O; b. PhCH2MgCI, ether, -70°, 48%; c. (BOC)pO, CH2Cl2, rt, 
100%; d. BuqNF, THF, rt, 96%; e. Jones oxidation, 68%. 
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NC/\/OH 2 DHC~OTD8 L FZOTCM LFGOTD8 

9 10 11 12 

13 4(E) 

SCHEME 3. a. TDS-Cl, DBU, CH2Cl2,80%; b. DIBAH, toluene. -70° to -200,85%; c. (Et0)2PO-CHF-COOEt, 
LDA, THF, -70°, 76%; d. DIBAH, toluene, -700, 72% e. LiN(SfMe3)2, -25O; f. PhCH2MgCI, 14%; g. (BOC)20, 
CH2Cl2, rt, 869/o; h. Bu4NF, THF, It, 77%; i. Pt/C, 02,28%. 

In sharp contrast to pure olefln dipeptide isosteres, where the double bond easily migrates into conjugation to the 

carbonyl group 16, the fluoroolefin analogues 3 and 4 and their derivatives are resistant toward such isomerisations, 

clearly indicating the StablCzfng effect of fluorfne to the double bond 17. 

In conclusion we have established a simple route to the first fluoroolefin dipeptide isosteres that mimic the Gly-Gly 

and Phe-Gly peptides. A generalization of the shown synthetic scheme to AA-Gly fluoroolefin dipeptide mimics is 

possible by changing the organometallic species added to the silylimine intermediate. Further examples, alternative 

routes and biological applications are publfshed in the accompanying paper and elsewhere 1s. 
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Tablo 1: ‘H NMR data (300MHz, CDCg) of some compounds RR’Cf+CF=CH-CHs-R” 

NO 

68 
6b 
7a 
7b 
7c 

R R’ R” mp 1-H 3-H 4-H CH20 CH2Ph NH 
OH 

0 CH2Ct.i - 913 616 263 
0 CH2OSi - 9:20 6:04 2:54 

!% 
3:70 

3.5 
- - 

OH H CH2CXi - 4.11 4.91 2.31 3.60 - 1.65 
Br H CH2CSi - 3.93 5.06 2.31 3.60 - - 

PhthN H CH2CXi - 4.36 4.93 2.26 3.55 - - 
NH2 H CH2CSi - 3.27 4.73 2.26 3.56 - 1.36 

PhthN H CH7CI-l 64 4.40 4.97 2.36 3.65 - 

it t!%! C&H 154 4.41 3.65 5.16 5.03 3.12 3.15 - - 

32.5 
33 

36.5 
35 
36 
37 
36 
34 

2.73;296 ::: ii 
2.95 4.73 37 

2.92;3.01 4.76 36.5 
2.66;3.06 6.32 37 

- 16 
2.66 22 
2.92 4.92 

2.70-3.05 20 

8 NH2 CH2Ph CH2OSi - 3.56 4.70 2.27 3.52 
9OCNH CH2Ph CH2OSi - 4.45 4.66 2.26 3.49 
BOCNH CH2Ph CH2OH - 4.45 4.59 2.30 3.53 

4(Z) BOCHH CH2Ph COOH lo6 4.46 5.05 3.10 - 
12 0 CH2C3i - 9.75 6.23 
13 NH2 CH2Ph CH@i - 3.66 5.00 1.90 3.27 

BXNH CH2Ph CH2C4-l - 4.60 5.06 2.12 3.40 
4(E) BOCNH CH2Ph CCCH - 4.63 5.24 3.00 - 

Table 2: 13C 

No R 
6b 0 
6 
- Bt%H 

chemical shilts and C-F coupling constants of some compounds 
RR’CH-CFICKCH~CH~OSI 

R’ 

CHPh 
CHPh 

c2 c3 
156.6 (260) 126.5 (11) 
161.4(254) 101.9(14) 
157.2 (257) 103.7 

c4 

z:x 
34.2 

c5 
60.7 
62.2 
62.0 

CH2Ph 

4;.1 
36.9 
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