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FLUOROOLEFIN DIPEPTIDE ISOSTERES - I.
The Synthesis of Gly¥W(CF=CH)Gly and Racemic Phe¥(CF=CH)Gly

Thomas Alimendinger @ *, Pascal Furet ® and Emst Hungerbihler
2 Central Research Laboratories, ® Pharmaceuticals Division
Ciba-Geigy AG, CH-4002 Basel, Switzerland

Summary: The syntheses of Gly-Gly and racemic Phe-Gly fluoroolefin dipeptide isosteres are
described, the first examples of a new class of peptide analogues.

The use of non-hydrolyzable amide isosteres is an established approach 1.2 49 overcoming one of the major drawbacks in
the use of peptides as therapeutic agents, namely their rapid degradation by peptidases. One known approach is to use
the trans-olefinic as amide mimic, which is geometrically equivalent to the amide bond in its most stable (transoid)
conformation 3. Several contributions to the synthesis and application of this class of compounds 1 have been made 4,
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We have calculated the molecular profiles of N-methyl acetamide, trans-2-butene and 2-fluoro-2(Z)-butene as
simple models of the peptide bond (see figure 1). Their comparison suggests that the fluoroolefin unit is an even better
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amide bond substitute mimicking both steric and electronic features of the peptide bond. Dipole moment calculations
enabled Abraham 7 to reach the same conclusion, though attempts to synthesize the corresponding dipeptide isostere
2 have not, until now, been successful 8. In this Igtter we describe the preparation of the first examples of fluoroolefin
isosteres 3 (Gly-Gly mimic) and 4 (Phe-Gly analogue), the latter in both the E and Z configuration at the fluoroolefin
double bond.
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Scheme 1. a. CHCIoF, CH2Clg, 50% NaOH, PhCH2NE3CH, 41%; b. aq. HCI, dioxane, reflux, 34%; ¢. TDS-C|, imidazole,
DMF, rit, 65%,; d. DIBAH, toluene, -70°, 80%; e. CBra, PhgP, CHoCl, 0°, 50%; f. K-phthalimide, DMF,50°, 55%; g. NaN3,

DMF, rt, 64%; h. LAH, ether, 11, 80%; i. (BOC)20, CH2Clp, 85%; k. R, R'=Phth: 1% HClin EtOH, R=BOC, R'=H: BugNF; \.
Jones oxidation, 68%.

As summarized in scheme 1 the Gly-Gly fluoroolefin dipeptide isostere 3 was synthesized from cyclic acetal 5,
obtained by the procedure of Dehmiow 9. Compound 5 was then subjected to acid catalyzed hydrolysis which occurred
with concomitant double bond!? isomerisation to give the Z configurated o.B-unsaturated aldehyde 6a. Further
elaboration as detalled in scheme 111 ultimately afforded the N-protected amirio acids 3a and 3b 13.

The Phe-Gly isostere 4(Z) was prepared starting with the aldehyde 6b (scheme 2). Thus treatment with lithium
hexamethyldisilazide 14 at -259C to form the corresponding silylimine followed by in situ addition of benzylmagnesium
chloride and aqueous work up afforded the amine 8 in 48% yield. After protection of the amino group, deprotection and
oxidation of the alcohol functionality, the N-BOC protected dipeptide isostere 4(Z) was obtained as a racemate’3. in
order to study the significance of the double bond geometry we also synthesized the corresponding 4(E) isomer by a
similar reaction sequence (scheme 3). The silyloxypropanal 10, prepared from 3-hydroxy-propionitrile 9, was
fluoroolefinated using triethylphosphonofiuoro acetate 15 to get the E-configurated ester 11 which was further reduced
to the aldehyde 12, the double bond isomer of the before mentioned aldehyde 6b. In situ silylimine formation and
Grignard addition furnished the amine 13, which was transformed in three further steps to 4(E).
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Scheme 2. a. LiN(SiMe3)2, THF, hexane, -25°; b. PhCHaMgCl, ether, -70°, 48%; ¢. (BOC)20, CHzCla, nt,
100%; d. BugNF, THF, rt, 96%,; 8. Jones oxidation, 68%.
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SCHEME 3. a. TDS-CI, DBU, CHxClp, 80%; b. DIBAH, toluene, -70° to -20°, 65%; ¢. (EtO)2PO-CHF-COOE!,
LDA, THF, -70°, 76%; d. DIBAH, toluene, -70°, 72%; e. LiN(SiMes)2, -259; f. PhCHaMgCl, 14%; g. (BOC)20,
CHaClp, rt, 86%; h. BugNF, THF, rt, 77%; i. PU/C, Og, 28%.

In sharp contrast to pure olefin dipeptide isosteres, where the double bond easily migrates into conjugation to the

carbonyl group 16, the fluoroolefin analogues 3 and 4 and their derivatives are resistant toward such isomerisations,

clearly indicating the stabilizing effect of fluorine to the double bond 17.
In conclusion we have established a simple route to the first fluoroolefin dipeptide isosteres that mimic the Gly-Gly

and Phe-Gly peptides. A generalization of the shown synthetic scheme to AA-Gly fluoroolefin dipeptide mimics is
possible by changing the organometallic species added to the silylimine intermediate: Further examples, alternative

routes and biological applications are published in the accompanying paper and elsewhere 18,
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